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sors into sums of rank-1 symmetric tensors of linearly inde-
pendent vectors. The criteria rely on two facets of higher 
degree forms, namely Harrison’s algebraic theory and some 
algebro-geometric properties. The proposed algorithms are 
based purely on solving linear and quadratic equations. More-
over, as a byproduct of our criteria and algorithms one can 
easily decide whether or not a homogeneous polynomial or 
symmetric tensor is orthogonally or unitarily decomposable.
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1. Introduction

The paper is concerned about the problem: given a homogeneous polynomial f ∈
C[x1, · · · , xn] of degree d ≥ 3, decide whether it is equivalent to xd
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(called diagonalizable) and if so, give efficient algorithms to express the equivalence. 
It has an equivalent version in terms of symmetric tensors: given a symmetric d-tensor 
A = (ai1···id)1≤i1,··· ,id≤n, provide criteria and algorithms to express A = v⊗d

1 + · · ·+ v⊗d
n

where the vi’s are a basis of Cn. Though this is a typical problem of classical invariant 
theory (see e.g. [9]), especially in the polynomial version, it has aroused much interest 
in communities of applied mathematics and computing sciences. As a matter of fact, 
the problem has been explicitly proposed in some previous papers [4,11,14] of signal 
processing and computational complexity. In addition, assuming a homogeneous polyno-
mial is equivalent to a sum of powers of independent linear forms, people are interested 
in whether one can choose the change of variables to be orthogonal or unitary. See for 
example [15,19,1,13] among many works in this direction.

In this paper we tackle the problem (mainly in the polynomial version) through two 
important aspects of higher degree forms (another popular synonym of homogeneous 
polynomials of degree at least 3): the algebraic theory, a higher analogue of Witt’s 
algebraic theory of quadratic forms, initiated by Harrison [6,7], and algebro-geometric 
properties of sums of powers. The crux is Harrison’s centers of higher degree forms, 
which can be seen as a generalization of symmetric matrices. In particular, the direct sum 
decompositions of a form are in bijection with the decompositions of the unit of its center 
algebra into orthogonal idempotents. On the other hand, it is obvious that diagonalizable 
forms enjoy nice algebro-geometric properties. Specifically, they are smooth and this 
imposes very strong restriction, namely the semisimplicity, on their centers. With this 
one can easily show that a form f ∈ C[x1, · · · , xn] is diagonalizable if and only if its 
center algebra is Z(f) ∼= C ×· · ·×C (n copies). This enables us to provide several criteria 
and algorithms for diagonalizing higher degree forms or symmetric tensors. We present 
in detail a simple algorithm involving only linear equations (for computing the center) 
and quadratic equations (for computing orthogonal primitive elements and presenting 
the explicit diagonalization). Furthermore, with the help of Harrison’s uniqueness of the 
decomposition of a form into a direct sum of indecomposable forms [6], we notice that 
the orthogonal or unitary decomposability of a form (over appropriate ground fields) is a 
property of its diagonalizability. Once the diagonalization is determined, one can decide 
whether a form is orthogonally or unitarily decomposable by a straightforward check on 
any chosen change of variables for the diagonalization. As an example to illuminate our 
approach, we provide a simple proof for a main result of [1,13].

The theory of Harrison’s centers was also used to study polynomial equivalence in the 
literature. In his thesis [20], Saxena introduced a class of cubic forms which can capture 
the isomorphism problem of commutative algebras and he obtained the indecomposabil-
ity of the cubic forms via Harrison’s theory. Direct sum decompositions of higher degree 
forms have also been approached via the Apolarity Lemma, see e.g. [12,2]. In particular, 
the centers of higher degree forms were rediscovered in [12]. However a full application 
to direct sum decompositions via centers was not pursued therein. Numerical approaches 
were also applied to orthogonal decompositions of symmetric tensors. For example, in 
[16] Kolda showed that it is possible to solve the symmetric orthogonal tensor decompo-
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sition algorithm via a straightforward matrix eigenproblem with the assumption that the 
orthogonal decomposition exists or with a small amount of noise. This is compatible with 
our findings. In particular, based on the criteria of diagonalizability (see Theorem 4.4) 
we find that Kolda’s result can be extended to all diagonalization of symmetric tensors, 
see Remark 4.7.

It is natural to extend the main strategy of the present paper to two more general 
problems. One is the Waring decompositions of forms, that is decomposing forms into 
sums of powers of linear forms which are linearly dependent in general. In terms of sym-
metric tensors, this is the decompositions into symmetric rank-1 terms. A possible way 
is to perturb a given nondiagonalizable form into a diagonalizable one in more variables. 
The other is the direct sum decompositions of forms, or equivalently the decompositions 
of symmetric tensors into sums of block terms. This is reduced to a thorough understand-
ing of the semisimple quotient of the center algebra of any given form. These problems 
will be addressed in our forthcoming work.

The remainder of this paper is organized as follows. In Section 2 we recall the basic 
notions and mutual interpretations of higher degree forms, symmetric tensors and sym-
metric multilinear spaces. Section 3 is devoted to centers and direct sum decompositions 
of forms. The main results, criteria and algorithms for (orthogonal or unitary) diago-
nalizations of higher degree forms, are presented in Section 4. In Section 5 we provide 
some examples to elucidate the criteria and algorithms. Throughout the paper, let d ≥ 3
be an integer and we consider forms and symmetric tensors of degree d. Although our 
motivating problem is over the complex numbers C, in most cases we can work over a 
general field k with chark = 0, or chark > d.

2. Higher degree forms, symmetric tensors and symmetric multilinear spaces

Higher degree forms are homogeneous polynomials of degree d ≥ 3. Similar to the 
familiar situation of quadratic forms, higher degree forms are naturally associated to 
symmetric tensors (i.e., symmetric multi-dimensional matrices) and to symmetric mul-
tilinear spaces.

Let f(x1, · · · , xn) ∈ k[x1, · · · , xn] be a form of degree d. For convenience, we write f
in the symmetric way:

f(x1, · · · , xn) =
∑

1≤i1,··· ,id≤n

ai1···idxi1 · · ·xid

where the ai1···id ’s are symmetric with respect to their indices. The resulting symmetric 
d-tensor A = (ai1···id)1≤i1,··· ,id≤n is called the associated symmetric tensor of f . We also 
write the form f(x1, · · · , xn) = Axd in terms of products of tensors (see e.g. [21]), where 
x = (x1, · · · , xn)T is the vector of variables. Corresponding to the form f there is also 
an associated symmetric d-linear space. Let V be a vector space over k of dimension n
with a basis α1, · · · , αn. Define Θ: V × · · · × V −→ k by
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Θ(αi1 , · · · , αid) = ai1···id , ∀1 ≤ i1, · · · , id ≤ n.

The pair (V, Θ) is called the associated symmetric d-linear space of f under the basis 
α1, · · · , αn. One can recover the form f from (V, Θ) as

f(x1, · · · , xn) = Θ

⎛
⎝ ∑

1≤i≤n

xiαi, . . . ,
∑

1≤i≤n

xiαi

⎞
⎠ .

If x = Py with P = (pij) ∈ GL(n, k) is an invertible change of variables, then the 
resulting form is

g(y1, · · · , yn) =
∑

1≤j1,··· ,jd≤n

∑
1≤i1,··· ,id≤n

ai1···idpi1j1 · · · pidjdyj1 · · · yjd

and the associated symmetric tensor becomes

AP d :=

⎛
⎝ ∑

1≤i1,··· ,id≤n

ai1···idpi1j1 · · · pidjd

⎞
⎠

1≤j1,··· ,jd≤n

.

We call AP d the d-congruence of A by P . Let (β1, · · · , βn) = (α1, · · · , αn)P , then under 
this new basis the associated symmetric d-linear space reads

Θ(βj1 , · · · , βjd) =
∑

1≤i1,··· ,id≤n

ai1···idpi1j1 · · · pidjd , ∀1 ≤ j1, · · · , jd ≤ n.

The form f is called diagonalizable over k if

f(x1, · · · , xn) =
∑

1≤i≤r

λili(x1, · · · , xn)d,

where the λi’s are nonzero constants in k and the li’s are independent k-linear forms. 
Clearly, if this is the case then r ≤ n. Accordingly, the symmetric tensor A is called 
diagonalizable over k if there exists a P ∈ GL(n, k) such that AP d is diagonal (i.e., the 
entries are 0 unless the indices are identical), and the symmetric d-linear space (V, Θ) is 
called diagonalizable if there exists a basis β1, · · · , βn of V such that Θ(βj1 , · · · , βjd) = 0
unless j1 = · · · = jd. Moreover, if li(x1, · · · , xn) = vi1x1 + · · · + vinxn (1 ≤ i ≤ r)
and denote vi = (vi1, · · · , vin), then the corresponding decomposition of the associated 
symmetric tensor is

A = λ1v
⊗d
1 + · · · + λrv

⊗d
r .

A diagonalizable form is called orthogonally or unitarily diagonalizable if there is an 
orthogonal or unitary change of variables for the diagonalization. Of course, in this case 
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one needs to work on appropriate ground fields so that orthogonal and unitary groups 
are well-defined. We also remark that one may replace r by n in the previous definition, 
as one can consider only nondegenerate forms without loss of generality. See Section 3
for more explicit explanation.

In the following we don’t distinguish the three synonyms, namely higher degree forms, 
symmetric tensors and symmetric multilinear spaces. The discussions are mostly pre-
sented in terms of higher degree forms. One can easily shift to the versions of symmetric 
tensors and symmetric multilinear spaces.

3. Centers and direct sum decompositions

In his pioneering work [6] of algebraic theory of higher degree forms, Harrison intro-
duced the notion of centers (in terms of symmetric multilinear spaces) to deal with the 
direct sum decompositions of forms.

Definition 3.1. Let (V, Θ) be a symmetric d-linear space. The center, denoted by Z(V, Θ), 
of (V, Θ) is defined as

{φ ∈ End(V ) | Θ(φ(v1), v2, · · · , vd) = Θ(v1, φ(v2), · · · , vd), ∀v1, v2, · · · , vd ∈ V }.

Let f be the associated degree d form of (V, Θ) under a basis α1, · · · , αn. By H we 
denote the Hessian matrix ( ∂2f

∂xi∂xj
)1≤i, j≤n of the form f and by A(i3···id) the n × n

matrix (ai1i2i3···id)1≤i1,i2≤n where A = (ai1···id)1≤i1,··· ,id≤n is the associated symmetric 
d-tensor of f . Then we have the following equivalent definitions of centers in terms of 
forms (see [7]) and tensors.

Lemma 3.2. Keep the above notations. Then we have

Z(V,Θ) ∼= {X ∈ kn×n | (HX)T = HX}
= {X ∈ kn×n | XTA(i3···id) = A(i3···id)X, ∀1 ≤ i3, · · · , id ≤ n}.

Remark 3.3. The definition of centers by (V, Θ) is coordinate free, while the other versions 
by Hessian matrices and slices of tensors are not. Let P ∈ GL(n, k) be a change of 
coordinates. If we write

Z(A) = {X ∈ kn×n | XTA(i3···id) = A(i3···id)X, ∀1 ≤ i3, · · · , id ≤ n},

then Z(AP d) = P−1Z(A)P = {P−1XP | X ∈ Z(A)}.
Indeed, assume P = (pij) and denote B := AP d. Notice that

B(j3···jd) =

⎛
⎝ ∑

1≤i1,··· ,id≤n

ai1···idpi1j1pi2j2pi3j3 · · · pidjd

⎞
⎠

1≤j1,j2≤n
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= PT

⎛
⎝ ∑

1≤i3,··· ,id≤n

ai1···idpi3j3 · · · pidjd

⎞
⎠

1≤i1,i2≤n

P

= PT

⎛
⎝ ∑

1≤i3,··· ,id≤n

pi3j3 · · · pidjdA(i3···id)

⎞
⎠P.

Denote C(j3···jd) = pi3j3 · · · pidjdA(i3···id) and P−1 = (qij). Then we have

A(i3···id) =
∑

1≤j3,··· ,jd≤n

qj3i3 · · · qjdidC(j3···jd).

Now it follows that

Z(B) = {Y ∈ kn×n | Y TB(j3···jd) = B(j3···jd)Y, ∀1 ≤ j3, · · · , jd ≤ n}

= {Y ∈ kn×n | Y TPTA(i3···id)P = PTA(i3···id)PY, ∀1 ≤ i3, · · · , id ≤ n}

= {Y ∈ kn×n | PY P−1 ∈ Z(A)} = P−1Z(A)P.

Now we recall the definition of direct sum decompositions of forms.

Definition 3.4. A form f is called a direct sum if, after an invertible change of variables, 
it can be written as a sum of t ≥ 2 nonzero forms in disjoint sets of variables:

f = f1(x1, · · · , xa1) + · · · + ft(xat−1+1, · · · , xn).

If this is not the case, then f is said to be indecomposable. On the other extreme, f is 
diagonalizable if the fi’s are forms in only one variable.

If a higher degree form is a direct sum, then there may be various ways of decom-
positions. However, the decomposition into a direct sum of indecomposable forms is 
essentially unique thanks to Harrison [6]. It is clear that direct sum decompositions of 
f correspond to decompositions of its associated symmetric tensor in block terms by 
d-congruence, and to orthogonal decompositions of its associated symmetric d-linear 
space.

In this paper we are mainly interested in diagonalizable forms. For this there is no 
loss of generality in assuming the forms are nondegenerate as in [6], that is no vari-
able can be removed by an invertible linear change of variables. In other words, a form 
f ∈ k[x1, · · · , xn] is degenerate if there exists an invertible change of variables x = Py

such that the resulting form g involves less than n variables. That is, in terms of sym-
metric multilinear spaces, there exists 0 �= u ∈ V such that Θ(u, v2, · · · , vd) = 0 for all 
v2, · · · , vd ∈ V . For the associated symmetric d-tensor A, let Ai1 denote the (d − 1)-
tensor A = (ai1···id)1≤i2,··· ,id≤n. Then f is degenerate if the Ai1 ’s are linearly dependent 
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in the space of (d − 1)-tensors. Similar to the quadratic case, define the radical of the 
symmetric d-linear space by

rad Θ := {u ∈ V | Θ(u, v2, · · · , vd) = 0, ∀v2, · · · , vd ∈ V }

and the slicing rank of the symmetric d-tensor by

RankA := Rank{A1, · · · , An},

namely the size of any maximally linearly independent subset of {A1, · · · , An} viewed 
as vectors in the space of (d − 1)-tensors. Note that RankA is independent of the ways 
of slicing along the indices as A is symmetric. We warn the reader that the slicing rank 
defined here is not the usual tensor rank in the literature, see e.g. [10,18]. The rank of 
f , denoted by Rank f , is defined to be the essential number r of variables of f , that 
is, there exists an invertible change of variables x = Py such that the resulting form g
involves exactly r variables, say g = g(y1, · · · , yr) and is nondegenerate in k[y1, · · · , yr].

Lemma 3.5. Keep the previous notations. Then

Rank f = RankA = n− dim rad Θ.

Remark 3.6. One can easily give a proof mimicking the quadratic situation. As pointed 
out in [6], any form f can be decomposed as the direct sum of a nondegenerate form g
and a zero form h (meaning h ≡ 0). The slicing rank is Kruskal’s 1-slabs rank [17] for 
symmetric tensors. The essential number of variables of forms was also considered in [3]
via Apolarity Theory and Catalecticant Matrices. An efficient randomized algorithm for 
computing the essential variables was given by Kayal in [12].

Now we recall some important facts about centers and direct sum decompositions of 
forms which are useful in this paper. See [6, Propositions 2.3, 4.1 and 4.3] for proofs.

Proposition 3.7. Suppose f ∈ k[x1, · · · , xn] is a nondegenerate higher degree form. Then

(1) The center Z(f) is a commutative subalgebra of End(V ).
(2) If f = f1 + · · ·+ ft is a direct sum decomposition, then Z(f) ∼= Z(f1) × · · · ×Z(ft).
(3) If 1 = ε1 + · · · + εt is a decomposition of orthogonal idempotents for the unit of 

Z(f) (i.e. the identity matrix), then f = f1 + · · · + ft is a direct sum decomposition 
with the corresponding orthogonal decomposition of symmetric d-linear space V =
Im ε1 ⊕ · · · ⊕ Im εt.

(4) f is indecomposable over k if and only if Z(f) is a local k-algebra.
(5) f is diagonalizable over k if and only if Z(f) ∼= k × · · · × k (n copies).
(6) The decomposition of f into a direct sum of indecomposable forms is unique up to 

equivalence and permutation of indecomposable summands.
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(7) If K/k is a field extension, by fK it is meant treating f ∈ K[x1, · · · , xn], then 
Z(fK) ∼= Z(f) ⊗k K.

For later applications, we present some more explanations in particular for item (3). 
Let (V, Θ) be the associated symmetric d-linear space of f under the basis α1, · · · , αn. 
That is,

f(x1, · · · , xn) = Θ

⎛
⎝ ∑

1≤i≤n

xiαi, . . . ,
∑

1≤i≤n

xiαi

⎞
⎠ .

For simplicity, assume first that 1 = ε1 + ε2 where ε1 and ε2 are a pair of orthogonal 
idempotents in the center algebra Z(V, Θ). Then it is obvious that V = (ε1 + ε2)V =
ε1V ⊕ ε2V . For any v ∈ V , let v(i) = εi(v) for i = 1, 2. Then clearly v = v(1) + v(2). For 
any v1, · · · , vd ∈ V , we have

Θ(v1, v2, · · · , vd) = Θ(v(1)
1 + v

(2)
1 , v

(1)
2 + v

(2)
2 , · · · , v(1)

d + v
(2)
d )

=
∑

1≤i1,i2,··· ,id≤2
Θ(v(i1)

1 , v
(i2)
2 , · · · , v(id)

d )

= Θ(v(1)
1 , v

(1)
2 , · · · , v(1)

d ) + Θ(v(2)
1 , v

(2)
2 , · · · , v(2)

d ).

The last equality is a result of the following fact. This is where the orthogonal idempo-
tents play a part.

Θ(v(i1)
1 , v

(i2)
2 , · · · , v(id)

d ) = Θ (εi1(v1), εi2(v2), · · · , εid(vd))

= Θ (εi1εi2 · · · εid(v1), v2, · · · , vd)

= 0

unless i1 = i2 = · · · = id. Now take a basis β1, · · · , βl of ε1V and a basis γ1, · · · , γm
of ε2V . Then we have a new basis β1, · · · , βl, γ1, · · · , γm of V and under it the form 
becomes

Θ

⎛
⎝ ∑

1≤i≤l

yiβi +
∑

1≤j≤m

zjγj , · · · ,
∑

1≤i≤l

yiβi +
∑

1≤j≤m

zjγj

⎞
⎠

= Θ

⎛
⎝ ∑

1≤i≤l

yiβi, · · · ,
∑

1≤i≤l

yiβi

⎞
⎠ + Θ

⎛
⎝ ∑

1≤j≤m

zjγj , · · · ,
∑

1≤j≤m

zjγj

⎞
⎠ .

This is the direct sum decomposition corresponding to the given pair of orthogonal 
idempotents.
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In general, for a given idempotent decomposition 1 = ε1 + · · ·+εt, assume dim Im εi =
ni and choose a basis βi1, · · · , βini

for Im εi. Then β11, · · · , β1n1 , · · · , βt1, · · · , βtnt
is a 

basis of V and there exists a P = (pij) ∈ GL(n, k) such that

(α1, · · · , αn) = (β11, · · · , β1n1 , · · · , βt1, · · · , βtnt
)P.

For convenience, simplify the indices of the new basis as β1, · · · , βn. Then we have

f(x1, · · · , xn) = Θ

⎛
⎝ ∑

1≤i≤n

xiαi, . . . ,
∑

1≤i≤n

xiαi

⎞
⎠

= Θ

⎛
⎝ ∑

1≤j≤n

∑
1≤i≤n

pjixiβj , . . . ,
∑

1≤j≤n

∑
1≤i≤n

pjixiβj

⎞
⎠

= Θ

⎛
⎝ n1∑

j=1

∑
1≤i≤n

pjixiβj , . . . ,

n1∑
j=1

∑
1≤i≤n

pjixiβj

⎞
⎠

+ · · · +

Θ

⎛
⎝ n∑

j=n−nt+1

∑
1≤i≤n

pjixiβj , . . . ,

n∑
j=n−nt+1

∑
1≤i≤n

pjixiβj

⎞
⎠ .

Note that the last equality is due to the orthogonality of the εi’s. Let y = Px be the 
invertible change of variables and denote

g1(y1, · · · , yn1) = Θ

⎛
⎝ n1∑

j=1
yjβj , . . . ,

n1∑
j=1

yjβj

⎞
⎠ ,

...

gt(yn−nt+1, · · · , yn) = Θ

⎛
⎝ n∑

j=n−nt+1
yjβj , . . . ,

n∑
j=n−nt+1

yjβj

⎞
⎠ .

Now we have the desired direct sum decomposition

f = g1(y1, · · · , yn1) + · · · + gt(yn−nt+1, · · · , yn).

4. Main results

In this section, take the ground field k = C, the case of our interest. In order to 
obtain criteria and algorithms for diagonalizable forms we put their algebro-geometric 
properties, in particular the obvious smoothness, into consideration.
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Recall that a form f ∈ C[x1, · · · , xn] is called smooth, if the simultaneous equations

∂f

∂x1
= · · · = ∂f

∂xn
= 0

have no nonzero solutions, see e.g. [8]. In terms of the associated symmetric multilinear 
space (V, Θ), this is equivalent to

Θ(u, · · · , u, vd) = 0, ∀vd ∈ V ⇒ u = 0.

It is clear that, if f is smooth, then it is nondegenerate.
It was observed by Harrison [6] that the smoothness of f implies that its center Z(f)

has no nontrivial nilpotent elements. In the present situation, we have

Lemma 4.1. Suppose f ∈ C[x1, · · · , xn] is a smooth form of degree d. Then Z(f) ∼=
C ×· · ·×C, and dimZ(f) is equal to the number of indecomposable summands of f and 
dimZ(f) ≤ n. In particular, f is diagonalizable if and only if dimZ(f) = n.

Proof. For the sake of completeness, we recall Harrison’s argument that Z(f) has no 
nontrivial nilpotent elements if f is smooth. Assume the contrary, there is a nilpotent 
element φ ∈ Z(f) with φm+1 = 0 while φm �= 0 for some m ≥ 1. Then there is some 
v ∈ V such that φm(v) �= 0. Hence

Θ(φm(v), · · · , φm(v), vd) = Θ(φ2m(v), φm(v), · · · , φm(v), v, vd) = · · ·
= Θ(φ(d−1)m(v), v, · · · , v, vd) = 0

for all vd ∈ V as (d −1)m ≥ m +1. Now the smoothness condition of f forces φm(v) = 0. 
This is absurd.

The rest is easy. Since Z(f) is commutative with zero radical, then by the Wedderburn-
Artin theorem of semisimple algebras, Z(f) ∼= C × · · · × C. Now by Proposition 3.7, 
indecomposable direct summands of f are in bijection with orthogonal primitive idem-
potents of Z(f). Hence the number of indecomposable direct summands of f is exactly 
dimZ(f). As is obvious that this number can not exceed the number of variables of f , 
hence dimZ(f) ≤ n.

Finally, if f is diagonalizable, then its number of indecomposable summands is n, thus 
dimZ(f) = n. Conversely, if dimZ(f) = n, then Z(f) ∼= C × · · · × C (n copies) since 
Z(f) is a semisimple commutative C-algebra. It follows by item (5) of Proposition 3.7
that f is diagonalizable. �
Remark 4.2. As indicated in [6], one may define centers for nondegenerate quadratic 
forms which are essentially symmetric matrices. The diagonal idempotent matrices are 
obviously symmetric, hence in the center, and through symmetric bilinear forms they 
provide a diagonal decomposition for quadratic forms. The present lemma may be seen 
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as a generalization of this fact to higher degree forms, but with the great distinction 
that the existence of nontrivial idempotents is not automatic (in fact, almost impossible 
according to Proposition 4.3 in below).

From now on, let Vn,d ⊂ C[x1, · · · , xn] denote the linear space of forms of degree d
in n variables. Let Un,d ⊂ Vn,d be the set of smooth forms. It is well known that Un,d

is an open subset of Vn,d defined by an irreducible polynomial Δn,d �= 0, where Δn,d

is the discriminant (see Chapter 13 in [5]). Let Diagn,d ⊂ Un,d denote the subset of 
diagonalizable forms.

In the following we show that diagonalizable higher degree forms should be very special 
and rare.

Proposition 4.3. Diagn,d is a proper closed subset of Un,d.

Proof. Obviously, Diagn,d is not empty. Thanks to [22, Corollary 6.1], Diagn,d is a proper 
subset of Un,d. Note by Lemma 3.2 that the center Z(f) of a form f is the solution 
space of a system of linear equations, written simply as Cy = 0, which is obtained by 
combining together all the matrix equations therein. Consider the entries of C as linear 
forms of the coefficients of a general form in Un,d. Due to Lemma 4.1, a form f ∈ Un,d

is diagonalizable if and only if dimZ(f) = n, thus if and only if RankC = n2 −n. Again 
by Lemma 4.1, we have RankC ≥ n2 − n since n2 − RankC = dimZ(f) ≤ n. Now it 
follows that Diagn,d is a closed subset of Un,d defined by all the (n2 − n + 1)-minors 
of C. �

In summary, we have the following criteria for diagonalizable forms of higher degree. 
For convenience, we consider Z(f) ⊂ Cn×n and let D denote the subalgebra of Cn×n

consisting of all diagonal matrices.

Theorem 4.4. Suppose f ∈ Vn,d is nondegenerate. Then the following statements are 
equivalent:

(1) The form f is diagonalizable.
(2) The center Z(f) ∼= D.
(3) f is smooth and dimZ(f) = n.
(4) Z(f) is semisimple and dimZ(f) = n.
(5) dimZ(f) = n and any basis of Z(f) consists of diagonalizable matrices.
(6) dimZ(f) = n and Z(f) has a basis consisting of rank 1 and trace 1 matrices.

Proof. The equivalence of (1), (2), (3) and (4) is already contained in Lemma 4.1. Clearly, 
(2) implies (5) and (6). Assume (5), then by a simultaneous diagonalization of any basis 
(since Z(f) is commutative) one easily obtains Z(f) ∼= D. Finally assume (6). Note that 
a rank 1 and trace 1 matrix is obviously idempotent. The condition of (6) says exactly 
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that Z(f) has a basis consisting of n commuting idempotent matrices. This immediately 
implies Z(f) ∼= D. �

Now we turn to the problem of orthogonal or unitary diagonalizations of forms and 
symmetric tensors. This has been intensively studied in e.g. [19,1,13] and called symmet-
rically odeco (over R) or udeco (over C) therein. Apparently orthogonally or unitarily 
diagonalizable forms are a priori diagonalizable. On the other hand, notice that the 
diagonalization (if exists) of a form is essentially unique due to the seminal work of 
Harrison [6]. So the key is the diagonalization, and the orthogonality or unitarity is a 
property which can be checked directly. Therefore, it is very easy to decide whether or 
not a higher degree form or symmetric tensor is orthogonally or unitarily diagonalizable 
based upon the previous theorem.

Corollary 4.5. Suppose f ∈ Diagn,d and P = (pij)1≤i,j≤n is an invertible matrix such 
that

f =
∑

1≤i≤n

αi

⎛
⎝ ∑

1≤j≤n

pijxj

⎞
⎠

d

.

Then f is orthogonally (resp. unitarily) diagonalizable if and only if, after appropriate 
scaling of each row, P is orthogonal (resp. unitary).

Proof. Assume f is orthogonally (resp. unitarily) diagonalizable, that is there exist an 
orthogonal (resp. unitary) matrix Q = (qij)1≤i,j≤n such that

f =
∑

1≤i≤n

λi

⎛
⎝ ∑

1≤j≤n

qijxj

⎞
⎠

d

.

By item (6) of Proposition 3.7, there exists τi ∈ C∗ for all 1 ≤ i ≤ n such that

∑
1≤j≤n

qσ(i)jxj = τi
∑

1≤j≤n

pijxj ,

where σ is a permutation of {1, . . . , n}. That is, P is orthogonal (resp. unitary) up to 
scaling by a suitable diagonal matrix. The converse is trivial. �

As an example of our approach to symmetrically odeco and udeco, we give a simple 
proof for a main result in [1,13]: the set of symmetrically odeco tensors can be described 
by equations of degree 2. We will adopt the version of characterization for degree 3 in 
[13, Theorems 3.3 and 3.6], but prove the result for all degrees. In the following we use 
the notations of Lemma 3.2 and we stick to the notions in [1,13] for coherence.
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Proposition 4.6. A nondegenerate real (resp. complex) symmetric tensor A =
(ai1···id)1≤i1,··· ,id≤n is odeco if and only if the A(i3···id)’s pairwise commute (resp. and 
are diagonalizable).

Proof. We only prove the real case, as the complex case is similar.
Assume A is odeco. Then there exists an orthogonal matrix O such that AOd is 

diagonal. By Lemma 3.2, it is immediate that Z(AOd) = Dn(R), the subalgebra of Rn×n

consisting of all diagonal matrices. It follows by Remark 3.3 that Z(A) = ODn(R)OT . 
Again by Lemma 3.2, OTA(i3···id)O commutes with Dn(R) for all 1 ≤ i3, · · · , id ≤ n. 
Thus OTA(i3···id)O is diagonal for all 1 ≤ i3, · · · , id ≤ n. It follows right away that the 
A(i3···id)’s pairwise commute.

Conversely, assume the A(i3···id)’s pairwise commute. As they are all symmetric, there 
is an orthogonal matrix O such that OTA(i3···id)O is diagonal for all 1 ≤ i3, · · · , id ≤ n. 
As RankA = n, the linear span of all the OTA(i3···id)O is Dn(R). Then by Lemma 3.2, 
we have Z(A) = ODn(R)OT . Now It follows by items (3) and (5) of Proposition 3.7
that A is odeco. �
Remark 4.7. The previous simple criteria provide several ways to detect and determine 
the (orthogonal, or unitary) diagonalizations of higher degree forms. For example, by 
(3) of Theorem 4.4 compute dimZ(f) (via the rank of the matrix C in the proof of 
Proposition 4.3) and detect the smoothness of f (e.g., by the Jacobian criterion); by (4), 
compute Z(f) and detect the semisimplicity of a basis (via the minimal polynomial of 
any basis element, using Euclid algorithm to detect whether the polynomial has multiple 
roots); by (5), compute Z(f) and simultaneously diagonalize a basis; by (6), compute 
Z(f) and find a complete set of orthogonal primitive idempotents from any chosen basis 
of Z(f).

In the following we will focus on the fourth and give in detail a theoretical algorithm 
later on. The reason is two-fold: on the one hand, it detects and determines the explicit 
diagonalization simultaneously; on the other hand, it is relatively simple involving only 
linear and quadratic equations.

Algorithm 4.8. Take any f ∈ Vn,d. Let A be the associated symmetric d-tensor.

Step 1: Detect the nondegeracy. Compute RankA according to Lemma 3.5. If 
RankA = n, then continue; otherwise, say RankA = r < n, reduce the form f
into a nondegenerate one and restart in Vr,d.
Step 2: Compute the center. Solve the linear equations as in Lemma 3.2. If dimZ(f) <
n, then f is not diagonalizable and we stop; otherwise, choose a basis P1, . . . , Pn of 
Z(f).
Step 3: Compute the idempotents. Let λ1, . . . , λn be indeterminates. Consider the 
matrix ε =

∑
1≤i≤n λiPi and impose the conditions: Rank ε = 1 (i.e., all the 2 × 2-
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minors are zero) and trace(ε) = 1. Solve the equations. If there exists no solutions, 
then f is not diagonalizable and we stop; otherwise choose an ε and continue.
Step 4: Diagonalize the form. Decompose f according to the pair (ε, 1 − ε) of or-
thogonal idempotents as in the explanation after Proposition 3.7. Then we have 
f = l1(x1, . . . , xn)d+g where g is a nondegenerate form of degree d in n −1 variables 
which are linear forms of x1, . . . , xn independent from l1. Then return to step 1 and 
replace f by g ∈ Vn−1,d. If the input f is diagonalizable, then in n − 1 steps the 
procedure stops and we end up with a diagonalization of f .
Step 5: Check orthogonality or unitarity. By direct computation, verify whether the 
resulting change of variables is orthogonal, or unitary, or neither.

Remark 4.9. In principle, our algorithm can be easily adapted to diagonalize higher 
degree forms over non algebraically closed fields. That is, one can work firstly on the 
algebraic closure of the ground field and check directly if the final diagonalization can 
be realized on the given ground field. This is guaranteed by Harrison’s uniqueness re-
sult of decompositions of higher degree forms. In comparison with some previous works 
[1,4,11,13,14,19], our algorithm seems simple at first sight. In order to simplify the 
quadratic equations of the previous Step 3, an obvious reduction is to diagonalize the 
Pi’s simultaneously (as they are commuting). This is more or less equivalent to the 
tasks of computing eigenvalues and eigenvectors for which there are sophisticated algo-
rithms.

5. Some examples

In this section, we provide some examples which are solvable by hand. The first two 
examples are the well known canonical forms of binary quartics and ternary cubics. 
The last two examples are typical ternary cubics and quaternary quartics involving 
all possible monomials. These will help to fully elucidate our criteria and algorithms of 
diagonalization. There are two main steps in the computations. The first is a routine cal-
culation of linear equations according to Lemma 3.2 which gives centers as linear spaces. 
The second is to determine the algebraic structure of centers and single out idempotents 
to decompose the forms according to Steps 3 and 4 of Algorithm 4.8. Along the way, one 
can also see clearly how to decompose forms over non algebraically closed fields.

Example 5.1 (Binary quartics). Let ft = x4
1 + x4

2 + tx2
1x

2
2 ∈ k[x1, x2]. Then it 

is easy to see that ft is smooth if and only if t �= ±2. Moreover, if t = 0, 
then clearly ft is diagonal. In the following suppose t �= 0, ±2. The Hessian ma-

trix of ft is 
(

12x2
1 + 2tx2

2 4tx1x2
4tx1x2 12x2

2 + 2tx2
1

)
. Then by Lemma 3.2, we have Z(ft) ∼={(

a 0
0 a

)
|a ∈ k

}
∼= k if t �= ±6, Z(f6) ∼=

{(
a b

b a

)
|a, b ∈ k

}
∼= k × k, and 
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Z(f−6) ∼=
{(

a b

−b a

)
|a, b ∈ k

}
∼= k[x]/(x2 + 1). Therefore, if t �= ±6, then ft is 

absolutely indecomposable (namely, it remains indecomposable over any extension of 
the ground field).

For t = 6, we have the following decomposition of the unit into a sum of orthogonal 
idempotents:

(
1 0
0 1

)
= 1

2

(
1 1
1 1

)
+ 1

2

(
1 −1
−1 1

)
.

Note that (1, 1) (resp. (1, −1)) is a basis of the image of the first (resp. second) idem-
potent. Then (1, 1) and (1, −1) form a basis of k2 under which f6 is diagonalizable: 
f6 = 1

2 [(x1 + x2)4 + (x1 − x2)4].
For t = −6, if 

√
−1 ∈ k, similarly we have the following decomposition of the unit:

(
1 0
0 1

)
= 1

2

(
1

√
−1

−
√
−1 1

)
+ 1

2

(
1 −

√
−1√

−1 1

)
,

and (1, 
√
−1) (resp. (1, −

√
−1)) is a basis of the image of the first (resp. second) 

idempotent. Then under the new basis of k2 the form f−6 is diagonalizable: f−6 =
1
2 [(x1 +

√
−1x2)4 + (x1 −

√
−1x2)4]. If 

√
−1 /∈ k, then k[x]/(x2 + 1) is a field and thus 

f−6 is indecomposable (but not absolutely). In addition, if 
√

2 ∈ k as well, then f6 is 
orthogonally diagonalizable and f−6 is unitarily diagonalizable.

Example 5.2 (Ternary cubics). Consider the normal form of nonsingular ternary cubics 
fλ = x3

1 + x3
2 + x3

3 + 6λx1x2x3. Clearly f0 is already diagonal. In the following suppose 
λ �= 0. By a straightforward computation we have Z(fλ) ∼= k if λ3 �= 1, thus fλ is 
absolutely indecomposable in this case. If λ3 = 1 but λ �= 1, then Z(fλ) ∼= k × k × k, 
consequently fλ = 1

3 [(λx1+x2+x3)3+(x1+λx2+x3)3+(x1+x2+λx3)3] is diagonalizable 
(but neither orthogonal nor unitary). If λ = 1, then Z(f1) ∼= k × k[x]/(x2 + x + 1). In 
this case, according to the explanation after Proposition 3.7 take the change of variables 
x1 = y1 + y2, x2 = y1 + y3, x3 = y1 − y2 − y3 and we have the corresponding direct sum 
decomposition f1 = 9y3

1 −9(y2
2y3 +y2y

2
3) where the center of y2

2y3 +y2y
2
3 is isomorphic to 

k[x]/(x2+x +1). If k does not contain a primitive cubic root of unity, then k[x]/(x2+x +1)
is a field and thus y2

2y3 + y2y
2
3 is indecomposable by item (4) of Proposition 3.7. If ω ∈ k

is a primitive cubic root of unity, then k[x]/(x2 + x + 1) ∼= k × k and we can further 
decompose y2

2y3 + y2y
2
3 . In this case we have the diagonalization of f1 as

1
3 [(x1 + x2 + x3)3 + (x1 + ωx2 + ω2x3)3 + (x1 + ω2x2 + ωx3)3].

Furthermore, if k also contains 
√

3, then f1 is unitarily diagonalizable.
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Example 5.3. Consider the cubic form

f = x3
1 − 3x2

1x2 + 3x1x
2
2 + 3x2

1x3 + 3x1x
2
3 − 6x1x2x3 + 13x3

2 − 3x2
2x3 − 9x2x

2
3 + 15x3

3

in Q[x1, x2, x3]. In accordance with Lemma 3.2, let

A(1) =

⎛
⎜⎝ 1 −1 1

−1 1 −1
1 −1 1

⎞
⎟⎠ , A(2) =

⎛
⎜⎝−1 1 −1

1 13 −1
−1 −1 −3

⎞
⎟⎠ , A(3) =

⎛
⎜⎝ 1 −1 1

−1 −1 −3
1 −3 15

⎞
⎟⎠ .

Then by a direct calculation, Z(f) = {X ∈ Q3×3 | A(i)X = XTA(i), 1 ≤ i ≤ 3} =⊕
1≤i≤3QX(i), where

X(1) =

⎛
⎜⎝ 1 −1 1

0 0 0
0 0 0

⎞
⎟⎠ , X(2) =

⎛
⎜⎝ 0 1 −1

0 1 0
0 0 1

⎞
⎟⎠ , X(3) =

⎛
⎜⎝ 0 1 −5

0 0 1
0 −1 6

⎞
⎟⎠ .

Note that X(1) is of rank 1 and trace 1, hence it is a primitive idempotent. Then according 
to the pair (X(1), I3 −X(1)) of idempotents we have the following decomposition

(x1 − x2 + x3)3 + (14x3
2 − 6x2

2x3 − 6x2x
2
3 + 14x3

3).

Apply the same process to g := 14x3
2 − 6x2

2x3 − 6x2x
2
3 + 14x3

3. In fact, we can read 

from the X(i)’s that Z(g) = Q 

(
1 0
0 1

)
⊕Q 

(
0 1
−1 6

)
∼= Q[

√
2]. This is a quadratic 

extension of Q. It follows immediately that g is indecomposable over Q. Consequently 
Z(f) ∼= Q ×Q[

√
2] and f is a direct sum but not diagonalizable over Q.

However, over any field extension K/Q with 
√

2 ∈ K, one has easily Z(f) ⊗Q K ∼=
K ×K ×K and f is diagonalizable over K:

(x1 − x2 + x3)3 + [(1 +
√

2)x2 + (1 −
√

2)x3)]3 + [(1 −
√

2)x2 + (1 +
√

2)x3]3.

Finally by Corollary 4.5, it is clear that any diagonalization of f is neither orthogonal 
nor unitary.

Example 5.4. Consider the following rational quartic form

f =x4
1 + 4x3

1x2 + 4x3
1x3 + 4x3

1x4 − 12x2
1x

2
2 + 12x2

1x2x3 − 24x2
1x2x4 − 12x2

1x
2
3

− 24x2
1x3x4 + 24x2

1x
2
4 + 4x1x

3
2 − 24x1x

2
2x3 + 12x1x

2
2x4 − 24x1x2x

2
3 + 96x1x2x3x4

− 24x1x2x
2
4 + 4x1x

3
3 + 12x1x

2
3x4 − 24x1x3x

2
4 + 4x1x

3
4 + x4

2 + 4x3
2x3 + 4x3

2x4

+ 24x2
2x

2
3 − 24x2

2x3x4 − 12x2
2x

2
4 + 4x2x

3
3 − 24x2x

2
3x4 + 12x2x3x

2
4 + 4x2x

3
4 + x4

3

+ 4x3x − 12x2x2 + 4x x3 + x4.
3 4 3 4 3 4 4
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Similar to the previous example, let A denote the associated symmetric tensor of f and 
set A(i3i4) as in Lemma 3.2 to compute the center to get Z(f) =

⊕
1≤i≤4QX(i), where

X(1) =

⎛
⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎠ , X(2) =

⎛
⎜⎜⎜⎝

0 1 0 0
−1 1 0 0
0 0 0 1
0 0 −1 1

⎞
⎟⎟⎟⎠ ,

X(3) =

⎛
⎜⎜⎜⎝

0 0 1 0
0 0 0 1
−1 0 1 0
0 −1 0 1

⎞
⎟⎟⎟⎠ , X(4) =

⎛
⎜⎜⎜⎝

0 0 0 1
0 0 −1 1
0 −1 0 1
1 −1 −1 1

⎞
⎟⎟⎟⎠ .

Denote Y =
(

0 1
−1 1

)
and notice that X(2) = I2⊗Y, X(3) = Y ⊗I2 and X(4) = Y ⊗Y . 

Now it is ready to see that

Z(f) ∼= Q[x]/(x2 − x + 1) ⊗Q[x]/(x2 − x + 1) ∼= Q[
√
−3] ×Q[

√
−3].

So f is not diagonalizable over Q by Theorem 4.4, but is a direct sum of two rational 
indecomposable forms by item (3) of Proposition 3.7. In light of the structure of Z(f), 
it is not hard to find out a pair of orthogonal idempotents:

ε1 = 1
3

⎛
⎜⎜⎜⎝

2 −1 −1 2
1 1 −2 1
1 −2 1 1
2 −1 −1 2

⎞
⎟⎟⎟⎠ , ε2 = 1

3

⎛
⎜⎜⎜⎝

1 1 1 −2
−1 2 2 −1
−1 2 2 −1
−2 1 1 1

⎞
⎟⎟⎟⎠ .

Accordingly we take the following change of variables

x1 = 1
3(y1 + y2 + y3), x2 = 1

3(y1 + y3 + y4),

x3 = 1
3(y2 + y3 + y4), x4 = 1

3(y1 + y2 + y4).

The corresponding direct sum decomposition is f = t(y1, y2) + t(y3, y4) with

t(α, β) = 1
9(−α4 + 4α3β + 12α2β2 + 4αβ3 − β4).

Furthermore over any field extension K/Q with 
√
−3 ∈ K, the center Z(f) ⊗Q K ∼=

K ×K ×K ×K and f can be diagonalized as:

(x1 + ωx2 + ω2x3 + x4)4 + (ωx1 + x2 + x3 + ω2x4)4 + (ω2x1 + x2 + x3 + ωx4)4

+ (x1 + ω2x2 + ωx3 + x4)4
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where ω = −1
2 +

√
−3
2 . Therefore any diagonalization of f is neither orthogonal nor 

unitary.
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